Inequalities for eigenvalues of fourth-order elliptic operators in divergence form on complete Riemannian manifolds

نویسندگان

چکیده

We prove some inequalities of Payne-P\'olya-Weinberger-Yang type for eigenvalues fourth-order elliptic operators in weighted divergence form on complete Riemannian manifolds which generalizes the corresponding result clamped plate problem. also estimates lower order that contain from literature. As an application our results, we obtain bi-drifted Cheng-Yau operator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasilinear elliptic inequalities on complete Riemannian manifolds

We prove maximum and comparison principles for weak distributional solutions of quasilinear, possibly singular or degenerate, elliptic differential inequalities in divergence form on complete Riemannian manifolds. A new definition of ellipticity for nonlinear operators on Riemannian manifolds is introduced, covering the standard important examples. As an application, uniqueness results for some...

متن کامل

Uniformly Elliptic Operators on Riemannian Manifolds

Given a Riemannian manifold (M, g), we study the solutions of heat equations associated with second order differential operators in divergence form that are uniformly elliptic with respect to g . Typical examples of such operators are the Laplace operators of Riemannian structures which are quasi-isometric to g . We first prove some Poincare and Sobolev inequalities on geodesic balls. Then we u...

متن کامل

Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs

5 Analysis on weighted graphs 23 5.1 Measures on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Discrete Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3 Green’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4 Integration versus Summation . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Harnack Inequality for Nondivergent Elliptic Operators on Riemannian Manifolds

We consider second-order linear elliptic operators of nondivergence type which is intrinsically defined on Riemannian manifolds. Cabré proved a global Krylov-Safonov Harnack inequality under the assumption that the sectional curvature is nonnegative. We improve Cabré’s result and, as a consequence, we give another proof to Harnack inequality of Yau for positive harmonic functions on Riemannian ...

متن کامل

Fourth-order Operators on Manifolds with Boundary

Recent work in the literature has studied fourth-order elliptic operators on manifolds with boundary. This paper proves that, in the case of the squared Laplace operator, the boundary conditions which require that the eigenfunctions and their normal derivative should vanish at the boundary lead to self-adjointness of the boundary-value problem. On studying, for simplicity, the squared Laplace o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für Angewandte Mathematik und Physik

سال: 2022

ISSN: ['1420-9039', '0044-2275']

DOI: https://doi.org/10.1007/s00033-022-01690-3